
Theor Chim Acta (1991) 81:31-43 Theoretica 
Chimica Acta 
© Springer-Verlag 1991 

Intermolecular vibronic coupling and energy transfer 
in a fiat molecular aggregate* 

Renato E. Varas ~ and Jorge Ricardo Letelier 2 
Departamento de Matem~ticas, and 2 Departamento de Quimica, Facultad de Ciencias Fisicas y 

Matemhticas, Universidad de Chile, Casilla 2777, Santiago, Chile 

Received May 30, 1990; received in revised form and accepted December 10, 1990 

Summary. The migration of excitation within a small fiat molecular aggregate 
composed of identical molecules is described using a Davidov-like model and a 
mechanism of excitation transfer of F6rster type. We consider in this model the 
changes that take place in the equilibrium position of each molecule upon 
excitation and construct energy surfaces that describe "paths", that is, conditions 
for excitation localization and transfer that govern, in first-order, the motion of 
excitation within the aggregate. 
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I. Introduction 

Since the pioneering work of Emerson and Arnold [ 1] on the physical account of 
the photosynthetic process, there has been renewed interest in the theoretical 
description of the physical delivery of excitation or energy from antenna or bulk 
chlorophyll molecules to a primary reaction center. In the Franck-Teller model 
[2], upon photon absorption, a molecule (or group of molecules) is excited and 
the excitation transferred to other molecules mainly through the interaction 
between transition dipole moments. The rate at which the excitation is trans- 
ferred to a reaction center or "trap" has also been extensively studied [3, 9, 10]. 

In most of these theoretical descriptions of energy migration in aggregates of 
chlorophyll molecules, the phenomenon goes through a random walk process or 
through a localized excitation-diffusion process. In some of these models, the 
effect of molecular orientation has also been considered [4], in none of these 
models the role played by the molecular internal structure seems to have been 
considered. 

The number of molecules in a chlorophyll aggregate usually amounts to 
several hundreds and therefore these models are appropriate for such a large 
scale. Our motivation, on the other hand, is the transfer of excitation in a small 

* Presented in part at XVIII Jornadas Chilenas de Quimica, Santiago, 1989 
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scale where we have incorporated, with some detail, the internal structure of the 
participating molecules and the effect that coupling among them might have on 
the migration of excitation within the aggregate. It has been recently shown [8] 
that vibronic coupling plays an important role in the transfer and localization or 
"trapping" of excitation in a small three-dimensional molecular aggregate and 
that, whether a molecule will retain or forfeit the excitation will depend to a 
great extent on the magnitude of such coupling. 

We have used and extended these ideas in the study of a small flat molecular 
aggregate and we show, in the present work, that there are energy surfaces 
arising from intermolecular vibronic coupling that might govern the dynamics of 
the phenomenon and, at least for small molecular clusters, where these effects 
become noticeable, there are steps or jumps, if we consider a random-walk model 
to describe the flow of excitation within the aggregate; these will show higher 
probability, because they lead to lower energy states, and therefore the energy or 
excitation might migrate within the aggregate through certain preferred or more 
probable "paths". 

As the size of the aggregate increases, these effects in fact tend to vanish and 
on a large scale all steps become equally probable, which is the case of 
chlorophyll aggregates. 

In the present work we will attempt to describe such "paths" in small flat 
molecular aggregates, consisting of closed-packed arrangements of 19 identical 
molecules, and describe the conditions for migration or trapping of energy in 
some specific centers of this cluster. 

2. Formalism 

In this formalism we assume that energy migrates within the molecular aggregate 
following an excitation transfer mechanism, between adjacent molecules, similar 
to that proposed by F6rster in his study of excitation transfer between dimers 
[6]. We describe then the many-particle excited state within the framework of the 
delocalized electronic state theory of molecular excitons [7] and obtain the 
exciton states following a variational procedure. 

In the present approach, we take into account the changes that occur in the 
internal structure of the individual molecules upon excitation transfer through 
the alteration of the whole-molecule equilibrium position, which in turn can be 
described by a single coordinate Qi- There is no loss of generality in doing this 
because such description can always be done and Qi not necessarily has to be a 
normal coordinate. For instance, we might look into the changes that take place 
in bond lengths in a totally symmetric vibration such as the molecular "breathing 
motion". In this coordinate there will be a ground-state equilibrium position Qo 
and an excited-state equilibrium position Q* which have the same value for all 
molecules. 

The Hamiltonian for the aggregate of N identical molecules is then: 

N N 

i-i= E h,+ E v. (1) 
i = l  j > i  

Here, hi is the free-molecule Hamiltonian whose ground- and excited-state wave 
functions are ~0; and ~o*, respectively, and V~s represents the intermolecular 
interaction potential. 
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In zeroth-order, the exciton states ~u k of the system can be written as linear 
combinations of N locally singly-excited states following a Davidov-like formal- 
ism of excitation transfer [5, 7, 8]. 

N 

~Pk = ~ Ck~tb~ k = 1, 2 , . . . ,  N (2) 
i = !  

where 
N 

• i = go* I-[ goj i = 1 , 2  . . . . .  N 
j4=i 

In the present work we have neglected electron exchange between molecules. 
The lowest state eigenvalue 21 and its corresponding state function ~u 1 is then 
found solving the secular equation: 

I//,j - 2S,, I = 0 (3) 

where Sij = 6~j due to orthogonality of the functions ~ .  For each molecule we 
write its electronic energy in terms of the local equilibrium position displacement 
Qi as: 

(goi [hi [goi ) = Iv + ½k(Q, - Q0) 2 = w + e s (4a) 

and 

<go* Ihi]~o* > = w* + ½ k * ( Q i -  Q , ) 2  = w* + e *  (4b) 

here w and w* are the ground- and excited-state free-molecule electronic energies 
respectively, evaluated at the corresponding equilibrium positions. 

The following definitions must also be introduced: 

<golgo;I v,+lgo, go,> = v 

<go * goj[ vii[ go* goj > = v* (5) 
which are the coulombic interactions between unexcited molecules and between 
unexcited-excited molecules respectively, and also: 

(go* goj] Vo.[go, go* ) = U' (6) 

the pseudo-coulombic interaction between transition-charge densities [5, 6]. 
With the help of these definitions, the matrix elements of Eq. (3) are found 

to be: 
N 

//,.1. = ((/)i [HI ~, > = w* + e* + Z (w + ej) + (N -- 1) V* + ½(N -- 1 ) (N - 2) V 
j # i  

(7) 

and 

H,j = (~i[H[q)j> = U' (8) 

here, V and V* represent average values of coulombic pair interactions within 
the whole aggregate. In an aggregate of identical molecules, the electronic energy 
at the equilibrium position is the same for all of them, then without loss of 
generality, it is found convenient for solving Eq. (3), to measure energies relative 
to the constant value: 

w* + ( N - -  1)w + ( N -  1)V* + ½ ( N -  1 ) ( N - 2 ) V  
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in order to simplify the matrix elements. We simultaneously change to dimen- 
sionless variables by measuring energies in units of ¼(k +k*)(Qo-Q.)2 and 
thus we can rewrite Eqs. (7) and (8) in dimensionless form. These become now: 

and 

H~,=2{(I_K)q 2 2q~(1-KQ) 2( l=KQ2)]  
( Q - l )  + ( 0 - 1 )  2 J 

N 2K { q~ 20qj ~ Q2 } 

+,<.= ( I + K )  ( ~ o - 1 ) + . , ( 0  
(9) 

4U' 
HiJ - (k + k*)(Qo - Q~)e = U 

In these equations we have introduced two dimensionless parameters: 

Q0 k 
O=O~o and K=~-g 

which measure the degree of distribution of the potential surfaces (i.e. the 
changes in equilibrium position and force constant) along the coordinate Qi of 
the ground- compared to the excited-state of a free molecule. We also have 
introduced the dimensionless distortion coordinate: 

Ok 
qk (O0-O~')  

3. Results 

In principle, Eq. (3), with its matrix elements given by Eq. (9), can be solved 
analytically to yield vibrational potential functions, defined in the space spanned 
by the N coordinates {qi}, in which the effect, in first-order, of intermolecuiar 
vibronic coupling on the energy localization and transfer can be interpreted by 
analysing the changes in such potentials. Analytical surfaces obtained in this way 
have been pictured in three dimensions for the case of a small molecular 
aggregate with five molecules [8] but for more bulky arrangements, Eq. (3) must 
be solved numerically once the input variables qi (i = 1, 2 . . . .  , N) have been 
defined in a specific configuration (i.e. location of the excitation in a specific 
molecule within the aggregate). Nevertheless, it is not simple to make a drawing 
of these surfaces and extract conclusions due to the high number of variables. 
We will illustrate this analytical procedure for small flat closed-packed arrange- 
ment of spherical molecules, where we can take advantage of the inherent C6 
symmetry. 

In the molecular aggregate of Fig. 1, consisting of 19 identical molecules in 
closed packing arrangement, we take the central portion, that is, the central 
molecule (labelled 1) and the first surrounding layer of molecules (labelled 2-7) 
and treat this portion as a small 7-molecule aggregate. For this aggregate, 
analytical solutions for the lowest eigenvalue in Eq. (3) have been found [11] 
provided that the coordinate Qi, representing the distortion in equilibrium 
position, is itself totally symmetric i.e. like the molecular breathing motion, for 
we can represent the collective vibrational motions of the whole aggregate then 
in C 6 symmetry. The set of seven vibrations {Qi } (or {qi }) in this symmetry gives 
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Fig. 1. The relative 
position and numbering of 
molecules in a 19-molecule 
flat aggregate in 
closed-packing 
arrangement 

rise to A + B + E1 + E2 symmet ry  species whose associa ted  collective mo t ions  
{Oi} are: 

{0~ = ql + (q2 d- q3 q- q4 -+- q5 + q6 d- qT) 

A 02 = - q l  + (q2 + q3 + q4 + q5 + q6 q-- q7) 

B { 0 3 = - q z - + - q 3 - - q 4 + q s - q 6 + q 7  

04 = q2 + 2q3 + q4 --  q5 - 2q6 - q7 ( 1 O) 

E1 05 = 2q2 + q3 - q4 2q5 - q6 + q7 

06 ~--- 2q2 --  q3 --  q4 q- 2q5 -- q6 --  q7 

E2 07 = --q2 + 2q3 --  q4 --  q5 + 2q6 --  q7 

and  the inverse t r ans format ion :  

ql = 1~(01 - 02) 

q2 = 1(01 q- 02 - 203 -/- 205 + 206) 

q3 = ~(01 + 02 + 203 q- 204 q- 207) 

q4 ---- 1(01 q- 0 2  - -  203 + 204 -- 205 --  206 --  207) (11) 

q5 = ~(01 + 02 + 203 - 205 + 206) 

q6 = 1 ~ ( 0 1  -1- 0 2  - -  203 -- 204 q- 207) 

q7 = ~2(01 -]- 0 2  -]- 203 --  204 + 205 -- 206 --  207) 

Wi th  the help o f  Eq. (11), all d i agona l  elements Hi,. in Eq. (9) can be rewri t ten 
in terms o f  the set o f  collective v ibra t ions  {0i }, giving rise to long expressions 
which are no t  given here. The  simplest  analysis  one can do is to take  the l imit  
U ~ 0. In  this s i tuat ion,  the eigenvalues are clearly 2~ = Hk~ (k = 1, 2 . . . . .  7) 
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Table 1. Lowest eigenvalue 2 of a 7-molecule aggregate in the limit 
U = 0 . 0  or 2 k =Hkk.  Here A = ( 6 + Q ) / ( I  -Q) ,  B = ( 6 - Q ) / ( 1  -Q) ,  
C = ( 4 + Q ) / ( I  - Q )  

Eigvl. O1 02 03 04 05 06 07 

21 A B 0 0 0 0 0 
2 2 A C 1 - 1  - 2  - 2  1 
23 A C - 1  - 2  - l  1 - 2  
24 A C 1 - l 1 1 1 
25 A C - 1 1 2 - 2  2 
•6 A C 1 2 1 1 1 
27 A C - 1  1 - 1  1 - 1  

and for specific values of the variables {0i }, one of these eigenvalues in turn, 
corresponds to the lowest eigenvalue. Thus, we search for the set of collective 
vibrations {0 i }k that minimize 2k, that is: 

~Hkk 
-- 0 for all j ¢ 1, where k = 1, 2 , . . . ,  7 00j 

We have excluded coordinate 01 because if one of the molecules is to be excited, 
then its value is always 0~ = (6 + Q)/(I -Q)  in each one of all minima. 

The values of {0i }k that give minimum values for 2k = H~k are summarized 
in Table 1. With the aid of this table and the definitions of Eqs. (1 1), it is readily 
seen that for the minimum 221 --Hll  we have: 

1 Q0 
Q* and that q2=q3 . . . .  - q 7 - (  1 -Q)  (Q0 Q~') 

ql ( 1 - 0 )  ( Q o -  Q*) 

similarly, for the minimum 22 2 =//22, we find instead: 

1 Qo 
Q* and that ql = q3 . . . .  = q7 = ( 1 ~ )  (Qo Q*) q 2 - -  (1 - Q) ( Q 0 -  Q~') 

and so on. 
These eigenvalues, computed at the minima, correspond to values at specific 

points of the potential hypersurface for the collective vibrations of the aggregate 
in the space of N coordinates {0~ }. In absence of resonance interaction U, all 
these eigenvalues have of course the same magnitude, as can be seen from Eq. 
(7); this is not necessarily so when we allow the molecules to interact and, 
furthermore, the values {0g} at which the minima occur suffer considerable 
changes as it will be seen later. The important fact is that in the space spanned 
by {0~}, the potential energy hypersurface shows N minima, correspondingly 
with the excitation being localized at a specific molecule. 

We focus our attention now on certain collective vibrations which "promote" 
the excitation transfer among molecules. These modes are 02 and 03 (see Eqs. 
(10)). 

We will take as an example the mode 02. From Table 1 we see that the 
eigenvalue )-1 at its minimum value means 02 = ( 6 -  Q)/(1 --Q), that is Q1 = Qo* 
or that the excitation is at the center molecule, whereas for 22~1 at their 
respective minimum means 02 --- (4 + Q)/(1 - e), that is to say Qi = Q* or that 
the excitation is now located at one of the external molecules. Along coordinate 
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Fig. 2. Energy profile along the 
out-of-phase collective vibration 
02 (the limit U ~ 0 (solid line) 
and U > 0 (dotted line)) and a 
schematic drawing of the 
expansion-contraction stages of 
molecules "1" and "2" (it is 
assumed that Q* > Q0) 

0 2 therefore we can draw a potential curve with two minima which describe the 
two above situations and which are shown in Fig. 2 for the limit U ~ 0. For  zero 
intermolecular interaction these curves are two adjacent oscillators. There will be 
an energy barrier between the two minima at the crossing point which will 
decrease as we allow the intermolecular interaction to increase. 

Now consider that we look into the transfer of excitation between molecules 
"1" and "2" and that we assume that for the excited molecule Q* > Q0, that is, 
in this breathing motion the molecule contracts itself after giving off the 
excitation. 

In the collective mode 02, molecules "1" and "2" vibrate out-of-phase, as it 
is sketched in Fig. 2. In this figure, we show schematically the transfer of  
excitation to molecule "2" from molecule "1" through the passage over the 
energy barrier, if vibrational distortions are big enough or by tunnelling, which 
also might be of  importance for low vibrational levels. In any case, we start out 
in the left well of Fig. 2 and see how the system moves toward the right. There 
is a "transition point" (marked T in Fig. 2) where molecule "1" in its process of  
contraction and molecule "2" in its process of expansion both would have 
reached their respective turning points if they were at the top of the barrier, but 
instead of  reversing their vibrations, they continue contracting and expanding 
respectively and the system eventually falls in in the potential well at the right, 
which describes the potential energy of an outer molecule bearing the excitation 
(in this case molecule "2"). The transfer of excitation is thus accomplished by a 
smooth crossing of the energy barrier accompanied also by a smooth transfer of  
vibrational distortion energy. 

The flow of excitation among the external molecules is accomplished with the 
help of  the "promoting" collective mode 03. Again, if we sketch potential curves 
along this coordinate, we find a two-well system with its extrema located at 
03 = - 1 and 03 = ÷ 1 respectively in a fashion very similar to Fig. 2. In this case, 
however, the left well corresponds to odd-numbered eigenvalues (excitation 
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localized in odd-numbered molecules) and the well at the right to even-numbered 
eigenvalues (excitation in even-numbered molecules). We follow a similar line of 
reasoning to that given above for 02 as a "promoting" mode, but now is readily 
seen from Table 1 that the transfer always occurs between an odd-numbered 
molecule and an even-numbered molecule and vice versa. 

When the intermolecular interaction U increases, it is found that 21 is 
lowered with respect 2j ~ 1 (see Fig. 2) and also there is a lowering of the barrier, 
which for large interactions become itself a minimum. This last situation 
describes the excitation delocalization between pairs of molecules. 

For more bulky molecular aggregates, such as the 19-molecule of Fig. 1, it is 
still possible to make few simplifications if we grant spherical symmetry to the 
vibration Qi and define "promoting" collective modes. Nevertheless, we have 
studied the more general case of the 19-molecule aggregate of Fig. 1 in closed- 
packed arrangement where the symmetry of Qi has not been taken into account. 
Here Eq. (3) was solved numerically after defining the input variables qi 
(i = 1, 2 . . . . .  19). 

To carry out computations, we assumed that bonding in an excited molecule 
is weaker compared to bonding in an unexcited one. We arbitrarily assumed a 10 
percent enhancement of the equilibrium position and a 5 percent weakening of 
the force constant in the excited state and therefore the parameters Q and K were 
given the values 0.90 and 1.05, respectively. These values are likely though to 
represent a real situation. We tested, nevertheless, the effect of varying these 
parameters on the eigenvalues of Eq. (3) but these turned out to be quite 
insensitive to both Q and K and therefore their arbitrary choice does not have an 
effect on the overall qualitative conclusions drawn in the present work. 

Calculations were made for several locations of a single excitation among the 
molecules of an aggregate consisting of 19 identical molecules (see Fig. 1) in 
planar arrangement. We assumed spherical shape for drawing purposes although 
only their relative location is important. There is also no imposed restrictions on 
the symmetry of the coordinate Qi. We solved then Eq. (3) by standard 
diagonalization methods and concentrated only on the lowest eigenvalue 41 and 
its respective eigenfunction 7Jl computed for configurations consisting of either, 
the electronic excitation localized in the j th  molecule, a state that we denote 
~1 (J) or (j)*, or, the excitation being "shared" (i.e. delocalized) among a group 
of neighbor molecules, say the j th  and the kth, a state that we denote ~Pl(j-k) 
or (j-k)*. 

In Figs. 3, 4, and 5 we show energy surfaces (that is 21) as a function of the 
relative location of the excitation in the molecular aggregate for the weak- 
coupling case (U ~ 0) in Fig. 1, the strong-coupling case (U >/1.0) in Fig. 4 and 
an intermediate case in Fig. 5. In all these figures we show only the positive 
quadrant of Fig. 1. The rest of the aggregate produces identical surface drawings. 
The set of axes is the same as in Fig. 1 and we have also included the molecule 
label for dearness. 

In these figures, the highest peaks correspond to (i-j-k)* configurations or 
delocalization among three neighbor molecules but are actually much higher 
than as they appear there (see Table 2) and have been cut-down for drawing 
purposes; besides, only (i)*, (i-j)* and ( 1 - j - k ) *  configurations were calculated 
and therefore Figs. 3 and 4 and also 5 are smoothened surfaces drawn using 
splines technics. 

Figures 3, 4, and 5 need also further explanation. In these graphs we have 
plotted the energy of the lowest eigenvalue vs. a specific configuration (i.e. 
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Fig. 3. Computer drawing for the weak-coupling case (U = 0.2) of the state energy surface for 
configurations (i)*, (i-j)* and (i-j-k)*. (Energy in units of ¼(k + k*)(Qo- Q~)~). For configura- 
tions (i)*, the energy is constant within the boundary of molecule i, all other values correspond to 
situations of "sharing" of excitation 
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Fig. 4. Computer drawing of the strong-coupled case (U = 1.2) of the state energy surface for 
configurations (i) *, ( i - j )  * and (i - j - k )  *. (Energy in units of ½ (k + k*)(Q0 - Q *) 2) 
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Fig. 5. The energy state surface for the intermediate-coupling case (U = 0.8). The peaks (i-j-k)* 
have been removed and some favorable trajectories for inward excitation shown 

Table 2. Lowest eigenvalue 2~ (in units of ¼(k +k*)(Qo-O~)2) 
for a 19-molecule aggregate. The strong-(U = 1.2), intermediate- 
(U = 0.8) and weak-(U = 0.2) coupling case 

Config. W e a k  Intermediate Strong 
coupling coupling coupling 

(1)* -0.0993 -0.0186 -1.8355 
(2)* -0.0982 -0.9777 - 1.7887 
(8)* -0.0694 -0.7981 -1.5268 
(19)* -0.0532 -0.6658 -1.3450 
(1-2)* +0.2174 -1.0004 -1.9181 
(2-7)* +0.2181 -0.9759 - 1.8679 
(2-9)* +0.2153 -0.8532 -1.7413 
(2-8)* +0.2382 -0.9071 - 1.8025 
(8-19)* +0.2525 -0.8208 - 1.7055 
(1 2-7)* +22.397 +21.080 +20.190 
(2-7-8)* +22.363 +20.950 +20.150 
(2-8-9)* +22.354 +20.930 +20.150 
(8-9-19)* +22.253 +20.870 +20.070 
(1-2-5)* +22.396 +21.050 +20.180 

locat ion of the excitation) and  therefore the X and  Y axes are given only for 
reference purposes; that is to specify the b o u n d a r y  regions between molecules 
and  regions of the X Y  plane occupied by the molecules and  do not  represent 
coordinates  of molecular  distortions. 

While  the excitation is localized in a specific molecule, the eigenvalue 
remains the same within the boundar ies  of that  molecule, and  that fact is 
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Tab le  3. The  coefficients C~,,, o f  the  lowest  e igens ta te  gs~(ijk) (see Eq.  2) c o r r e s p o n d i n g  to  the  

c o n f i g u r a t i o n  ( i- j-k)* for  the  s t r o n g - ( U  = 1.2) a n d  w e a k - ( U  = 0.2) c o u p l i n g  case  

7 ' , ( 1 )  ~ , ( 1 ,  2) ~ ( 1 ,  2, 3) 

Coeff .  W e a k  S t r o n g  W e a k  S t r o n g  W e a k  S t r o n g  

Cl.l  1.000 1.000 0 .995 1.000 0 .000 0 .295 

C1,2 - 0 .045 - 0 .255 1.000 - 0 .818 0 .010 - 0 .090 

Ci,3 - - 0 . 045  - -0 .255  - -0 .198  - - 0 . 0 6 0  - -0 .010  - - 0 . 0 9 0  

C1,4 - 0 .045 - 0 . 2 5 5  - 0 .079 - 0 . 4 4 1  0.668 - 0 . 5 2 1  

C1,5 - 0 .045 - 0 .255 - 0 .092 - 0 .194 - 1.000 - 0 .308 

CI ~6 -- 0.045 - 0 .255 - 0 .079 - 0.441 1.000 - 0 .310 

Ci,7 - - 0 . 045  - -0 .255  - -0 .198  - - 0 . 0 6 0  - -0 .671  - - 0 . 5 2 0  

CI,8 0 .004  0 .180 - 0 . 0 7 7  0 .370 0 .274 0 .855 

CI,9 0 .002 - 0 .033 - 0 .088 0 .027 - 0 .133 - 0 .659 

Ct, lo 0 .004 0 .180 --  0 .077 0 .370 0 .002 0 .683 

CI,II 0 .002  --  0 .033 0 .026 --  0.201 0 .128 --  0 .660 

C1.12 0.004 0.180 0 .026 0 .260 - -0 .269  0 .856 

CI,13 0 .002 - 0 .033 0 .003 - 0 .035 - 0 .205 - 0 .608 

C1.14 0.004 0 .180 0 .017 0 .282 0 .044 0.998 

C1,15 0 .002 - 0 .033 0 .006 - 0 .130 0 .442 - 0 .757 

CI,~6 0.004 0 .180 0 .017 0 .282 0.001 0.971 

CI, 17 0.002 - 0 .033 0.003 - 0 .035 - 0 .446 - 0 .757 

C1,18 0.004 0 .180 0 .026 0 .260 - 0 . 0 4 0  1.000 

C1,19 0.002 --  0 .033 0 .026 --  0 .202 0.203 --  0 .608 

represented in Figs. 3, 4, and 5 by a flat surface labelled correspondingly. The 
actual vibronic hypersurface cannot be represented in this manner. 

For the configuration (1)*, that is, we have computed Eqs. (9) with q~= 
1/(~ - 1) and qj¢l = Q/(Q -- l) which in turn means Q1 = Q* and Qj¢I = Qo. The 
resulting eigenfunction hul (1) is predictably highly localized in molecule "1" for 
weak interaction (U-~ 0) as is shown in Table 3 but tends to delocalize among 
neighbor molecules with increasing interaction U. The corresponding eigenvalues 
appear in Table 2 for both the weak- and strong-coupling case. 

The wave function for a configuration such as (1-2)*, where the excitation 
is delocalized between two adjacent molecules, is also shown in Table 3. Here we 
have computed the matrix elements of Eqs. (9) with: 

1+~o ~o 
q l=q2  2 ( Q - l )  and q j # ~ , 2 - ( ~ _ l )  

which in turn means: 

Q1=Q2=½(Qo+Q*) and Qj~I,2=Qo. 

The outcoming wave function 7~1 (1, 2) shows delocalization mainly between 
molecules "1" and "2" for weak interaction but exhibits increasing delocalization 
among the rest of the molecules of the aggregate as the interaction increases. 
These results are summarized in Tables 2 and 3. There we also show the wave 
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function for the configuration (1-2-3)* where three molecules "share" the 
excitation. In this case, the matrix elements of Eqs. (9) were computed with: 

1 + ~ and 0 
ql = q2 = q 3  - 3(0 - 1) qj~ 1.2,3 - -  ( O  _ _  1)" 

The wave function now turned out to be entirely delocalized among the rest 
of the molecules of the aggregate for both the weak- and strong-coupled limits. 
The energy of such a configuration is very high and is shown in Figs. 3 and 4 and 
also in Table 2. 

We return now to Figs. 3 and 4. From the shape of the potential energy 
functions, we see that, for the weak-coupling case, the excitation tends to be 
localized in a single molecule and that the central molecule is associated with the 
lowest energy configuration, a result that might seem obvious if one simply 
counts the number of interactions with surrounding molecules. Since in this 
model we are considering only nearest neighbor interactions, if that were true, 
then the energy for the (1)* type configuration should be equal to that of (2)* 
configuration, but they are not, as can be seen in Table 2, and this difference 
increases with increasing interaction. 

For the strong-coupling limit, delocalized configurations of (i-j)* type are 
lower energy in energy compared to the (i)* type and again their relative energy 
increases as the molecules involved are located farther apart from the center of 
the aggregate. 

This is clearly a sort of "mirror image" of the features of the weak-coupling 
limit and therefore there should be an intermediate value of U for which the 
potential energy function increases monotonically, along certain "paths", with 
the distance from the central molecule. We have found that for a value of 
U-~ 0.80 the energy barrier for the transfer of excitation between pairs of 
adjacent molecules disappear and that the excitation is almost free to flow 
among the molecules and preferably toward the central molecule. These results 
are shown in Fig. 5. In this figure we have suppressed the peaks corresponding 
to (i-j-k)* configurations in order to get a clearer view of possible "paths" for 
energy flowing in the aggregate. 

We see in Fig. 5 that, in a "radial path" (i.e. molec. 9 ~molec. 2 ~molec. 1), 
the excitation will readily flow toward the central molecule following a favorable 
energy gradient with no barrier or "trapping" energy wells, while there are 
shallow delocalized trapping wells, between exterior molecular pairs, for any 
other trajectory (for example, in paths such as molec. 9 ~ 8 -~ 2 ~ 7 ~ 1 there is 
delocalized trapping between molecules 9 and 8 in Fig. 5). The flowing of 
excitation in circular paths becomes almost free near the center of the aggregate 
for this optimum value of U while there is some delocalized trapping with 
increasing distance from the center of the aggregate. 

Within the framework of the present model, the relative orientation of the 
molecular dipoles (i.e. the sign of U) has no substantial effect on the state 
energies since a square dependence on U is expected in the diagonalization 
process and thus, the qualitative conclusions drawn in the present work do not 
change appreciably. Inclusion of non-nearest neighbor interactions is of even less 
importance. 
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